ONE-POINT PERSPECTIVE

A perspective drawing tries, as closely as possible, to replicate the way we truly see the world. However, there are important aspects of our vision that it cannot duplicate. Perspective drawing can account for only one of our eyes—not two—so the drawings actually show what we would see with one eye shut. It also cannot account for our ability to move our bodies, turn our heads, and shift our gaze. Keep in mind that perspective drawings can only show the world in a single instant in time as the viewer is staring straight ahead, with one eye closed. The shortcomings of perspective drawing reveal how incredible our sense of sight really is.

In this assignment, you will use your cube model to learn to construct one-point perspective drawings from two specific view points. For this assignment, you may use a scale (on your metal ruler) and triangle to properly locate the drawing on the page. As always, you may not use them to draw any lines or to make guide marks. If you have been properly practicing drawing straight freehand lines, you can successfully complete this challenging assignment with your new drawing skills. As you draw perspectives, remember to use your pencil to frequently test the straightness of your lines.

Assignment 8: Due TUESDAY, NOV. 7
Duration: 4-6 Hours

CUBE DRAWINGS: TWO VIEW POINTS
Follow these steps carefully to properly construct two one-point perspective views of your cube.

1. **Select Cube Elevations:** Find your 4” cube from Assignment 6. (If your cube is too simplistic or poorly constructed, this is a good time to make a better one.) Choose a front view (elevation) and a top view (top elevation/plan) of the cube to be looking toward/into.

2. **Set-Up Page:** Orient your paper horizontally. On each side of the paper, draw a one-point perspective of the cube, carefully following the instructions below.

3. **Draw Plan and Picture Plane:** At the top center of each side draw a plan (top view) of the cube at half scale (2” square). Leave only 1/2” margin of space at the top of the page. Your selected elevation (front view) should be toward the bottom of the page. You may need to use dashed lines to show hidden details. Both plans should be the same. Place the Picture Plane at the back of the cube plan. Draw and label the Picture Plane.

4. **Determine Station Point:** For both drawings: Study possible appropriate locations for the Station Point by thinking about the Center of Vision and the Cone of Vision. Be sure the Center of Vision is at 90 degrees to the Picture Plane and the Cone of Vision is about 60 degrees. Remember that the Station Point does not have to be in the center of the cube. (You can try different locations by placing trace over your drawing.) The Station Point should be in the same relative position for each of the two drawings. Place the Station Point at an appropriate distance from the cube. Draw the Center of Vision and the Cone of Vision using light dashed lines. Label the Station Point, the Center of Vision, the Cone of Vision, and the 60 degree angle.

5. **Draw the Ground Line:** For both drawings: Draw the Ground Line about 4” from the bottom of the page. Label the Ground Line.

6. **Draw the Horizon Line:** Now, imagine that your cube is the size of a small room or building—it is 8 feet tall. For the left side of the page, imagine that you are standing on the ground looking at your cube, and, using the same scale as the plan, draw a Horizon Line at eye level—about 5 feet off the ground. On the right side of the page, imagine that you are standing on a tall ladder or on another building and looking at your cube, and draw a Horizon Line at 12 feet off the ground. Label the Horizon Lines and the height of each.
7. **Determine Vanishing Point:** For both drawings: Locate and label the Vanishing Point.

8. **Draw the Basic Cube:** For both drawings: Draw the “true” back elevation of the cube. (This should be a simple square with no detail.) Lightly show all construction lines. Draw the rest of the cube with no detail. You should have a simple outline drawing [twelve lines] of a cube in perspective. This will greatly help your drawing’s accuracy.

9. **Add the Subtractions:** For both drawings: Add the detail [subtractions] of the cube.

10. **Finish:** For both drawings: Add finished line weight using medium and dark lines. Use the same criteria for line weight as you would for an axonometric drawing. Remember to slightly cross and “punch” corners for good line quality.

Terms to understand: perspective, cone of vision, center of vision, ground line, horizon line, picture plane, station point, vanishing point

Text: Review and understand these reference pages from Ching’s *Design Drawing*:

 p. 201-225 perspective drawings (some of this material also uses 2-point perspective)
 p. 226-236 one-point perspective