Varied Factor Ordering in 2-D Quantum Gravity and Sturm-Liouville Theory

Justin Rivera

Wentworth Institute of Technology

May 26, 2016
Brief introduction to the project

We are looking for the space of physically allowable wavefunctions for 2d quantum gravity

Solutions to Schrödinger’s equation

Solving for eigenfunctions of the Hamiltonian gives a basis for wavefunctions given the Hamiltonian is self adjoint

Sturm-Liouville Theory and orthogonality of eigenfunctions of the Hamiltonian

Conclusion
The Model

- Spacetime is $M \cong \mathbb{R} \times S^1$ equipped with a 2-metric g
- x^0 parametrizes time \mathbb{R}
- $\ell(t)$ is the arc length around the spatial manifold $\{x \in M \mid x^0 = t\}$
- Arc length is calculated with respect to the spatial part of the metric g
- Results in a Lagrangian for ℓ as a dynamical variable (Nakayama 1994)

$$L = \frac{1}{4l(x^0)} \left(i(x^0)\right)^2 - \lambda l(x^0) - \frac{(m + \frac{1}{2})^2}{l(x^0)}$$
Rationale for studying 2-D

- Our Hamiltonian for 2-D quantum gravity

\[H_m = \Pi_\ell \ell \Pi_\ell + \left(m + \frac{1}{2} \right)^2 \ell^{-1} + \lambda \ell \]

- Notice the factor ordering ambiguity in the kinetic term

- Also our configuration variable \(\ell \) must be positive

- Both key issues in 4-D General Relativity that can be studied in our 2-D model
Varied Factor Ordering

- Our Hamiltonian

\[H_m = \Pi_\ell \ell \Pi_\ell + \left(m + \frac{1}{2} \right)^2 \ell^{-1} + \lambda \ell \]

- Notice the factor ordering ambiguity

- Choose a two-parameter family of orderings where \(i + j + k = 1 \)

\[\ell^i \Pi_\ell \ell^j \Pi_\ell \ell^k \]

- Apply Schrödinger quantization: \(\ell \rightarrow \hat{\ell}, \Pi_\ell \rightarrow -i\hbar \frac{d}{d\ell}, \hat{H}\psi = E\psi \)

\[
-\hbar^2 \frac{d^2 \psi}{d\ell^2} - \hbar^2 \left(1 - (i - k) \right) \frac{d\psi}{d\ell} + \left(-\hbar^2 \left(\frac{(i - k)^2 - (i + k)^2}{4} \right) \ell^{-1} \right) + \left(m + \frac{1}{2} \right)^2 \ell^{-1} + \lambda \ell - E \right) \psi = 0.
\]
Self Adjointness

- When the Hamiltonian is of the form \(\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \) it is formally self adjoint i.e.

\[
\langle \hat{H}\psi, \phi \rangle \equiv \int (\hat{H}\psi) \phi \, dx = \int \psi (\hat{H}\phi) \, dx \equiv \langle \psi, \hat{H}\phi \rangle
\]

- With varied factor ordering the operator is not self adjoint with respect to \(d\ell \) and the wave function is not normalizable.

- To impose formal self adjointness we use the measure

\[
\ell^{k-i} d\ell
\]
The equation we need to solve

\[-\hbar^2 \ell \frac{d^2 \psi}{d\ell^2} - \hbar^2 (1 - (i - k)) \frac{d \psi}{d\ell} + \left(-\hbar^2 \left(\frac{(i - k)^2 - (i + k)^2}{4} \ell^{-1} \right) + \left(m + \frac{1}{2} \right)^2 \ell^{-1} + \lambda \ell - E \right) \psi = 0 \]

The general form of a confluent hypergeometric equation is

\[xy'' + (c - x)y' - ay = 0 \]

Substitutions are

\[z = \alpha \ell \]

\[\Psi(\ell) = e^{\beta z} z^\gamma y(z) \]

\[\alpha, \beta, \gamma \text{ are constants that we choose, } a, c \text{ are to be determined.} \]
The 3 free parameters were

\[\alpha = \frac{2\sqrt{\lambda}}{\hbar}, \quad \beta = -\frac{1}{2}, \]

\[\gamma = \frac{(i - k) \pm \sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{\hbar^2}}}{2} \]

Which determines \(a \) and \(c \) to be

\[a = \frac{-1 \pm \sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{\hbar^2}}}{2} + \frac{E}{2\hbar\sqrt{\lambda}} \]

\[c = 1 \pm \sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{\hbar^2}} \]
Transformation

\[zy''(z) + \left(\sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{h^2}} - z \right) y'(z) - \]

\[\left(-1 \pm \sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{h^2}} \right) \left(\frac{-1 \pm \sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{h^2}}}{2} + \frac{E}{2\hbar\sqrt{\lambda}} \right) y(z) = 0 \]
Using the known solutions to the confluent hypergeometric equation we get the following energy eigenfunction and energy eigenvalues

\[\Psi_n(\ell) = Ne^{-\sqrt{\lambda}/\hbar} \ell^\gamma L_n^{(c-1)}(\alpha \ell) \]

\[E_n = 2\hbar \sqrt{\lambda} \left(n + \frac{1 \pm \sqrt{(i+k)^2 + \frac{4(m+\frac{1}{2})^2}{h^2}}}{2} \right) \]
Distinct Sets of Energy Eigenfunctions

- Notice that gamma has a plus-minus

\[\gamma = \frac{(i - k) \pm \sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{\hbar^2}}}{2} \]

- The energy eigenfunction involves \(\gamma \)

\[\Psi_n(\ell) = N e^{-\frac{\sqrt{\lambda}}{\hbar} \ell} \gamma L_n^{(c-1)}(\alpha \ell) \]

- Both the positive and negative branch yield a distinct set of energy eigenfunctions and eigenvalues

\[\mu = \pm \sqrt{(i + k)^2 + \frac{4(m + \frac{1}{2})^2}{\hbar^2}} \]
Questions about the Eigenfunctions

- Are the eigenfunctions in L^2?

$$\Psi_n(\ell) = N e^{-\frac{\sqrt{\lambda}}{\hbar}} \ell^\gamma L_n^{(c-1)}(\alpha \ell)$$
Questions about the Eigenfunctions

- Are the eigenfunctions in L^2?

$$\Psi_n(\ell) = Ne^{-\frac{\sqrt{\lambda}}{\hbar}} \ell^\gamma L_n^{(c-1)}(\alpha \ell)$$

- Always in L^2 when positive branch of μ is taken
- When negative branch of μ we need $\mu < 1$
Questions about the Eigenfunctions

- Are the eigenfunctions in L^2?

$$\Psi_n(\ell) = Ne^{-\frac{\sqrt{A}}{\hbar}} \ell^n L_{n}^{(c-1)}(\alpha \ell)$$

- Always in L^2 when positive branch of μ is taken
- When negative branch of μ we need $\mu < 1$

- Are the sets of eigenfunctions over complete in L^2?
Questions about the Eigenfunctions

- Are the eigenfunctions in L^2?

$$\Psi_n(\ell) = Ne^{-\frac{\sqrt{\lambda}}{\hbar}} \ell^\gamma L_n^{(c-1)}(\alpha \ell)$$

- Always in L^2 when positive branch of μ is taken
- When negative branch of μ we need $\mu < 1$

- Are the sets of eigenfunctions over complete in L^2?
- Is each set of eigenfunctions mutually orthogonal?
Questions about the Eigenfunctions

- Are the eigenfunctions in L^2?

$$\Psi_n(\ell) = N e^{-\frac{\sqrt{\lambda \ell}}{\hbar}} \ell^\gamma L_n^{(c-1)}(\alpha \ell)$$

- Always in L^2 when positive branch of μ is taken
- When negative branch of μ we need $\mu < 1$

- Are the sets of eigenfunctions over complete in L^2?

- Is each set of eigenfunctions mutually orthogonal?

- Are linear combinations of each set of eigenfunctions dense in L^2?
Sturm-Liouville Theory

Given a second order differential equation of the form

\[P(x) y'' + Q(x) y' + R(x) y = 0 \]

we can put it in Sturm-Liouville form

\[\left[\mu(x) P(x) y'(x) \right]' + \mu(x) R(x) y(x) = 0 \]

If we began with an eigenvalue problem, the S.L. form gives us the S.L. eigenvalue problem

\[p(x) y'(x)' + [\kappa r(x) - q(x)] y(x) = 0 \]

If \(y_1 \) and \(y_2 \) are eigenfunctions with distinct eigenvalues and appropriate boundary conditions then the solutions are orthogonal in \(L^2((a, b), r(x)dx) \)
Our Schrödinger’s equation with varied factor ordering is put into Sturm-Liouville form and we read off the eigenvalue problem

\[
\left[\ell^{(1-(i-k))} \psi' \right]' + \left(\frac{E}{\hbar^2} \ell^{k-i} - \left(\frac{\lambda}{\hbar^2} \ell^{1-(i-k)} - \left(\frac{(i - k)^2 - (i + k)^2}{4} \ell^{-(1+i-k)} \right) \right) \right] \ell^{-(1+i-k)} = 0
\]

\[
q(\ell) = \frac{\lambda}{\hbar^2} \ell^{1-(i-k)} - \left(\frac{(i - k)^2 - (i + k)^2}{4} \right) \ell^{-(1+i-k)}
\]

\[
p(\ell) = \ell^{1-(i-k)} \quad r(\ell) = \ell^{k-i} \quad \kappa = \frac{E}{\hbar^2}
\]
Boundary Conditions

- The boundary condition

$$\lim_{b \to \infty} \left[N_1 N_2 e^{\frac{-2\sqrt{\lambda \ell}}{\hbar}} P_1 P_2' \ell^{2\gamma+1-(i-k)} - N_1 N_2 e^{\frac{-2\sqrt{\lambda \ell}}{\hbar}} P_2 P_1' \ell^{2\gamma+1-(i-k)} \right]_{a}^{b} = 0$$

- Take positive branch of μ

$$\lim_{a \to 0} \left[N_1 N_2 e^{\frac{-2\sqrt{\lambda \ell}}{\hbar}} P_1 P_2' \ell^{1+\mu} - N_1 N_2 e^{\frac{-2\sqrt{\lambda \ell}}{\hbar}} P_2 P_1' \ell^{1+\mu} \right]_{a}$$

- Take negative branch of μ

$$\lim_{a \to 0} \left[N_1 N_2 e^{\frac{-2\sqrt{\lambda \ell}}{\hbar}} P_1 P_2' \ell^{1-\mu} - N_1 N_2 e^{\frac{-2\sqrt{\lambda \ell}}{\hbar}} P_2 P_1' \ell^{1-\mu} \right]_{a}$$
The eigenfunctions given by the positive branch of μ are orthonormal in $L^2((0, \infty), \ell^{k-i} d\ell)$.

The eigenfunctions given by the negative branch of μ are orthonormal in $L^2((0, \infty), \ell^{k-i} d\ell)$ when $|\mu| < 1$.

It is necessary to impose a boundary condition to get just one set of Sturm-Liouville eigenfunctions, which shows that a boundary condition is necessary information to characterize space of physically allowed wavefunctions.
Conclusion

- Applied varied factor ordering to the Hamiltonian

- Solved Schrödinger’s equation through a transformation to a confluent hypergeometric equation

- S.L. gives us proof of orthogonality of our eigenfunctions

- **Factor ordering matters**
Future work

- Try to find different transformations that will lead to different eigenfunctions

- Apply knowledge of factor ordering to 4-D General Relativity
Thank you for your time.
Questions?